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We have built a detailed kinetic model of translation initiation in yeast and have used a novel
approach to determine the flux controlling steps based on limited experimental data. An
efficient parameter estimation method was adapted in order to fit the most uncertain
parameters (rate constants) to in vivo measurements in yeast. However, it was found that
there were many other sets of plausible parameter values that also gave a good fit of the
model to the data. We therefore used random sampling of this uncertain parameter space to
generate a large number of diverse fitted parameter sets. A compact characterization of these
parameter sets was provided by considering flux control. In particular, we suggest that the
rate of translation initiation is most strongly influenced by one of two reactions: either
the guanine nucleotide exchange reaction involving initiation factors eIF2 and eIF2B or the
assembly of the multifactor complex from its constituent protein/tRNA containing
complexes. It is hoped that the approach presented in this paper will add to our
understanding of translation initiation pathway and can be used to identify key system-
level properties of other biochemical processes.
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1. INTRODUCTION

Biological processes can exhibit complex behaviour. A
full understanding of this behaviour is often only
possible by constructing a mathematical model, which
can then be used to investigate the relative importance
each individual reaction and species has on the overall
pathway (Di Ventura et al. 2006). However, obtaining a
model that reliably reproduces experimental results is
currently a considerable challenge in biology (Gutenkunst
et al. 2007). The set of reactions in the model will no
doubt be an approximation. The rate equations will
depend on one or several parameters; for example, a
mass-action rate equation will have a forward and
reverse rate constant. The model will also depend on
the initial concentrations that we set for each species.
Several or even all of these values may be unknown
and where parameter values have been measured
in vitro, they may not correspond to their values within
the cell.

An essential part of building the model is therefore to
fit these unknown parameters so that the model
reproduces experimental data. This issue is addressed
here, particularly for the case where only a limited
amount of experimental data are available. When faced
with such a task, we ask what use can be made of an
uncertain model and apply our techniques to study the
translation initiation pathway of protein synthesis. We
show that it is still possible to make definite conclusions
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and predictions about the flux control within the
pathway, even when we have only a small amount of
in vivo data.

There are three stages to the translation process
(McCarthy 1998) of protein synthesis: initiation;
elongation; and termination. In the initiation phase
the ribosomal subunits 40S and 60S are recruited to the
mRNA, a process that requires the binding of several
initiation factors in a complex sequence of events.
Once complete, the initiation factors dissociate leaving
the ribosome attached to the mRNA. In the elongation
phase, the ribosome moves along the mRNA while
forming a polypeptide chain of amino acids that fold
to produce the protein. In the termination step, the
ribosome dissociates into its 40S and 60S subunits
releasing the protein. The initiation phase of trans-
lation is believed to be rate limiting (Jacques & Dreyfus
1990). In this study, we therefore focus our attention
on building a model for translation initiation in
yeast and investigate the subdivision of control within
this pathway.

Previous studies (Heinrich & Rapoport 1980; Basu &
Chowdhury 2007; Skjgndal-Bar & Morris 2007; Zouridis &
Hatzimanikatis 2007) have used mathematical models in
an attempt to investigate how the rate of initiation
affects the overall rate of translation. The translation
initiation process has either been separated into a
subset of reactions (Skjgndal-Bar & Morris 2007), or
simply assumed to be constant (Basu & Chowdhury
2007; Zouridis & Hatzimanikatis 2007). The difference
in our study is that we build a detailed model of transla-
tion initiation in terms of all the known initiation factors.

This journal is © 2008 The Royal Society
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We use the recent parameter fitting methodology, the
proximate parameter tuning (PPT) algorithm ( Wilkinson
et al. 2008), adapt it by calculating the parameter bounds
on the fly, apply it to this ODE model of translation
initiation and use principal component analysis on the
distribution of flux control coefficients to make clear
conclusions that can be tested or at least are consistent
with other findings. This study suggests that there are two
reactions in the translation initiation pathway which have
greatest control over the flux through the pathway. We
compare this finding with what is known in the literature.

2. THE MODEL

Figure 1 shows the sequence of binding events in the
translation initiation pathway for our model. We
approximate it as consisting of 12 key reactions and
make the assumption that all elF2 molecules are
bound to GDP or GTP. The tRNA molecules enter
the pathway by binding to the elF2GTP complex.
However, the initiation process hydrolyses this GTP
molecule resulting in the elF2GDP complex, and
therefore the GDP molecule bound to elF2 has to be
replaced with GTP to prevent depletion of e[F2GTP.
This event is catalysed by eIF2B (Pavitt et al. 1998;
Manchester 2001). We reduce this mechanism to just
two reactions. In reaction 1, eIF2GDP binds to elF2B
to form the eIF2GDP—elF2B complex. In reaction 2,
the GDP is replaced with GTP resulting in e[F2GTP
and free eIF2B. The tRNA then binds to the elF2GTP
in reaction 3.

The initiation factors eIlF1, eIF3 and eIF5 form the
trimolecular complex elF1—-elF3—elF5 in reaction 4.
This binds to the eIF2GTP-tRNA complex produced
by reaction 3 resulting in the multifactor complex
(MFC; Asano et al. 2000) in reaction 5. Then the MFC
and the initiation factor e[F1A are recruited to the 40S
ribosomal subunit in reaction 6 to form a complex that
we have labelled C1.

The mRNA enters the pathway from a separate
branch of the pathway. The elF4E and eIlF4G form the
elF4E—-elF4G complex in reaction 7. This complex
binds to the capped end of the mRNA molecule along
with the PabP initiation factor in reaction 8. The eIF4A
and elF4B initiation factors also bind to the mRNA
complex in reaction 9 to form a complex that we have
labelled C2. Then, in reaction 10, the tRNA complex C1
binds to the mRNA complex C2 to form the complex
C3. The elF5B initiation factor binds at reaction 11
and the 60S ribosomal subunit is finally recruited at
reaction 12.

Reaction 12 actually covers a sequence of events
where the 60S binds to the C3—eIF5B complex, which
then moves along the mRNA until the AUG codon of
the mRNA is reached. At this stage, the initiation
complex dissociates leaving the ribosomal subunit
attached to the mRNA from which the elongation
phase of translation begins. We make the assumption
that all initiation factors completely dissociate and
re-enter the initiation pathway as free molecules.

All reactions were modelled using reversible mass-
action kinetics, apart from reaction 12, which was
assumed irreversible. Reactions 4, 6, 8 and 9 of the

J. R. Soc. Interface (2009)

model involve the binding of three substrates to form a
trimolecular complex. In these reactions, the order in
which the substrates come together is uncertain. We
therefore assume random ordering with mass-action
kinetics, which allows the constituent bimolecular
reactions to be lumped into a single trimolecular
one, similar to the method of convenience kinetics
(Liebermeister & Klipp 2006). This does not imply that
these reactions are dependent on a coincident three-
body collision between the molecules, but can be
derived by considering a sequence of bimolecular
reactions (see appendix A; Cornish-Bowden 1995).
The rate equations for each reaction are displayed in
table 1. kf and k. are the forward and reverse rate
constants, respectively, for reaction .

The steady-state concentrations of the initiation
factors and the complexes they form are unknown.
However, we do know the total number of molecules per
cell, shown in table 2. In our model, the amount of each
initiation factor is a conserved quantity (moiety). We
can therefore set the initial concentration of each
initiation factor equal to their total amount. The 40S
subunit, 60S subunit, mRNA and tRNA form the end
product of the translation initiation pathway as the
mRNA-AUG complex of reaction 12. This complex is
removed from the system and so the 40S subunit, 60S
subunit, mRNA and tRNA concentrations are fixed at
their initial concentrations, which are also given in
table 2. All other intermediate species have an initial
concentration of zero. Starting from these initial
concentrations, the model can be brought to steady
state by integrating the rate equations forward in time
until all concentrations and the flux through the
pathway reach their steady-state values.

Unlike the initial concentrations, there is alarge degree
of uncertainty in the other parameter values required
by the model, namely the reaction rate constants
(table 3). Dealing with such uncertainty is a key concern
of this paper and is discussed in more detail below.

3. MODEL UNCERTAINTY

We can divide the uncertainty in the model presented
above into two categories: structural and parametric
uncertainties.

Structural uncertainty relates to the stoichiometry of
the biological reaction network. Many of the reactions
described above may themselves consist of multiple steps,
or else the order in which proteins and complexes
assemble and disassemble may differ from that which is
assumed. It could even be the case that completely
alternative routes exist. We believe that the model
presented above is sufficiently detailed to represent
current knowledge about the structure of the network
while avoiding the ‘combinatorial explosion’ of attempt-
ing to include all possible steps that may or may not exist.

Parametric uncertainty, on the other hand, refers to
the values of the model parameters, which, for the
mathematical model (based on ordinary differential
equations), comprise initial concentrations and reaction
rate constants. For translation initiation there are more
data available on the concentrations of each species.
Hence, the reaction rate constants are by far the most


http://rsif.royalsocietypublishing.org/

(600%) 220fu2qu] 208 Y

JOURNAL

OF

wieo INterface

elF2GDP-¢elF2B

elF2GTP

e

EERR-0)

JOURNAL JOURNAL

OF OF
THE ROYAL n el a‘ e THE ROYAL
SOCIETY SOCIETY

elFAE_elFAG

(el FAE—el FAG—PabP—mRNA)

\
O
-608
© (1)
elF1A
elF1-elF3—elF5, LeFIA }5(6)

Figure 1. The translation initiation pathway.

@ C3-€elF5B @

Interface

MRNA-AUG

€G  UOSUDY[IA\ [ S PU® MOPUI ‘[ Y  UOUDLIUL UOUD]SUD.L [0 104310,

610°BuiysiigndAiaioosieAos yisi woly papeojumod


http://rsif.royalsocietypublishing.org/

Interface

OF

THE ROYAL

JOURNAL
SOCIETY

Interface

OF

THE ROYAL

JOURNAL
SOCIETY

Interface

OF

THE ROYAL

JOURNAL
SOCIETY

Downloaded from rsif.royalsocietypublishing.org

54  Control of translation initiation R. J. Dimelow and S. J. Wilkinson

Table 1. Rate equations in our model for translation initiation.

reaction rate equation

1 k} - [eTF2GDP]- [eIF2B] — k! - [eIF2GDP-eIF2B]

2 k2-[eIF2GDP-eIF2B] — k2 [eIF2GTP] - [eIF2B|

3 k3 -[eTF2GTP]-[tRNA] — k3 - [eIF2GTP-tRNA]

4 ki -[eIF1]- [eIF3]- [eIF5] — k- [eIF 1-elF3—elF5]

5 k7 - [eIF2GTP-tRNA]- [eIF1-elF3-eIF5] — k2 - [MFC]

6 kS -[MFC]-[eIF1A]-[408] — kS -[C1]

7 El-[eIF4E]- [eIF4G] — kT - [elF4E-elF4G]

8 k} - [eTF4E-eIFAG]- [mRNA] - [PabP] — k¥ - [eIF4AE—eIF4G-PabP-mRNA]

9 kD - [cIF4E—cIF4G-PabP-mRNA]- [eIF4B]- [eTF4A] — kY- [C2)

10 ki +[C1]-[C2] = k- [C3]

1 k' [C3]- [eIF5B] — ki - [C3—cIF5B]

12 kf?-[C3-eIF5B]- [60S]

Table 2. Initial concentrations of each species used in the model.

molecule number per cell/10° fixed? reference
elF2B 0.3 von der Haar & McCarthy (2002)
elF2GDP 1.8 von der Haar & McCarthy (2002)
tRNA 20 yes estimate
elF1 2.5 von der Haar & McCarthy (2002)
elF3 1 von der Haar & McCarthy (2002)
elF5 0.483 Ghaemmaghami et al. (2003)
elF1A 0.5 von der Haar & McCarthy (2002)
408 2 yes French et al. (2003)
elF4E 3.4 von der Haar & McCarthy (2002)
elF4G 0.175 von der Haar & McCarthy (2002)
mRNA 0.15 yes Van Hoof et al. (2000)
PabP 1.98 Ghaemmaghami et al. (2003)
elF4A 8 von der Haar & McCarthy (2002)
elF4B 1.55 von der Haar & McCarthy (2002)
elF5B 0.134 Ghaemmaghami et al. (2003)
60S 2 yes French et al. (2003)

uncertain and we therefore focus our attention upon
these in the parameter fitting process described in the
next sections. Since there are no published in vivo values,
we estimate loose lower and upper bounds on their values
using a first principle approach (see §4).

4. RESULTS
4.1. Fit to the experimental data

We take our experimental data from a recent study
(Sangthong et al. 2007) in which the rate of protein
synthesis was measured with respect to the concentration
of initiation factors elF1A, eIF4E, elF4G and eIF5B.
The rates and concentrations are given as a percentage
of their naturally occurring values. The experimental
results are shown in figure 2, along with the correspon-
ding model-predicted values (MPVs) after the rate
constants in our model had been fitted to reproduce
these experimental data.

It can be seen that good fits were achieved for each
modulated elongation factor except e[F4G which has a
sigmoid-shaped curve for eIF4G. In fact, we fitted the
model only to the largest four experimental data
points for eIF4G since this seemed to guide the PPT

J. R. Soc. Interface (2009)

algorithm to the best overall fit across all elongation
factors. Although this means that the model does not
reproduce the elF4G data for concentrations below
50%, it does ensure the behaviour is correct near
conditions in which the yeast cells would naturally
operate. A sigmoidal shape could arise from cooperative
behaviour, but we have found no mechanisms involving
the participation of multiple elF4G proteins in the
published literature. In this work, therefore, we
adopted an unbiased strategy of assuming that all
reactions follow mass-action kinetics with the kinetic
order of each substrate being unity (table 1). However,
the data for eIF4G hint at the possibility of more
complex kinetics and our assumption will be relaxed in
future work if additional data confirm this.

4.2. Efficiency of the parameter fitting

We found that multiple sets of parameter values gave
fits to the measured data of a similar accuracy to
that shown in figure 2. This problem is therefore
an under-determined inverse problem (see §6). A family
of models was therefore generated, each model having
the same structure but a different set of parameters
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Table 3. Typical range for the rate constant values fitted to reproduce experimental results.

reaction

units lower mean upper

forward rate constant k¢
1 (LM s) ! 2.5 4.6 19.5
2 st 4.1 8.4 13.7
3 (uM s) ™! 3.4 15.4 68.6
4 (uMZs) 7! 3.8 13.4 36.6
5 (uM s) 1 7.4 26.3 82.3
6 (uMZs) ! 1.7 6.0 16.9
7 (uMs) ! 1.5 3.2 5.4
8 (uM?s) ! 2.9 7.8 23.7
9 (uM?s) 7! 5.3 13.9 31.5
10 (UM s)~* 30.1 56.5 85.6
11 (LM s) ! 27.7 45.2 65.2
12 (uM s) 26.1 56.8 86.3
reverse rate constant k.,
1 st 55.3 122.6 199.4
2 (LM s) 21.0 58.3 200.8
3 st 19.2 68.9 209.0
4 st 5.8 19.3 144.2
5 st 21.8 87.0 446.1
6 st 3.4 7.3 12.9
7 st 50.0 109.2 198.4
8 st 26.8 66.8 179.0
9 s ! 10.0 23.3 108.1
10 st 3.7 8.7 13.1
11 s7! 2.3 7.6 13.8
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Figure 2. Rate of protein synthesis versus initiation factor concentration for (a) eIF1A, (b) eIF4E, (¢) eIF4G and (d) eIF5B.
The graphs show the experimental data points (diamond) and model-predicted values (solid line).

fitted to reproduce the experimental data, in order to
extract important system-level properties of the trans-
lation initiation process (Kuepfer et al. 2007).

In order to perform a systematic evaluation of the
nonlinear parameter space, we used a scaleable
and effective parameter fitting algorithm called the
PPT algorithm (Wilkinson et al. 2008; see §5).
The PPT algorithm is a local optimization method and
the computationally expensive part of this parameter
fitting algorithm is in the calculation of the sensitivities
of the steady-state flux with respect to changes in each

J. R. Soc. Interface (2009)

parameter. We developed a computationally efficient
implementation, whereby the sensitivities were calcu-
lated using the SBAOsenssim routine from the SBAO-
toolbox, an extension of the Systems biology toolbox
(Schmidt & Jirstrand 2006) for MaTraB. This routine
was able to calculate all sensitivities from a single
time-course simulation to steady state. The speed and
efficiency of the SBAOsenssim routine in calculating the
sensitivities was the key feature that made it possible to
obtain many sets of fitted parameters on which this
study is based.
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We found that the convergence of the PPT algorithm
was highly dependent on the starting point used.
Instabilities in the algorithm often occurred, perhaps
due to sensitivities varying in sign and /or magnitude as
the algorithm progressed. We developed a strategy to
correct this pathological behaviour by limiting the
amount by which any parameter could be changed to
+30% of its value in the previous iteration. This
dramatically improved the probability of achieving a
convergence to a good fit when using variable starting
points. Implementing this additional constraint
increased the chances of successfully fitting the para-
meters starting from a random set of initial values from
less than 50% to around 90%. A successful fit was defined
to have a sum of residuals value less than 1.0, where the
residual is the absolute difference between the experi-
mental data point and the MPV in logarithmic space.

4.3. Distribution of fitted parameter values

To investigate the behaviour of the model, initial values
for the rate constants were randomly drawn from a
uniform distribution and passed through the PPT
algorithm to fit to the experimental data. For this
fitting procedure, it was convenient to use model-
specific units for the concentrations and reaction rates.
The concentrations were expressed in units of 10°
molecules per yeast cell, as expressed in table 2, making
the concentrations of the order of unity. Each time-
varying species is produced by one reaction and
removed by another. At steady state all reaction rates
must be equal and, as a first approximation, we
therefore expect all forward rate constants to be of
the same magnitude. Initial estimates of the reverse
rate constants were also chosen to be of a similar size,
the same tactic as employed in a previous study
(Wilkinson et al. 2008), so that initially there would
be no forward bias along the pathway. We were
interested to see how the PPT algorithm would adjust
these parameters in order to fit the model to the data.
All initial values of the rate constants were drawn from
a uniform distribution with a lower bound of 0 and an
upper bound of 1000. The choice for the upper limit is
essentially arbitrary as all rates were expressed relative
to the steady-state flux when all initiation factors are
present at their maximum value (figure 2).

Table 3 shows the typical range of the fitted rate
constants converted to micromolar units for the
concentration and seconds for the time. In making
the conversion to these units, we have assumed that the
volume of the yeast cell is 7X10~*1 (Sherman 1991),
which contains a total of 50X 10° protein molecules
(Futcher et al. 1999) and has a doubling time of
2.23 hours, measured using the yeast strain in the in vivo
study (Sangthong et al. 2007). Therefore, the wild-type
protein synthesis rate is approximately 6200 protein
molecules s~ '. The typical deviation about the mean
value of a fitted rate constant is characterized by lower
and upper bounds. The lower bound is 1 standard
deviation below its mean value, calculated from those
rate constants whose values were below this mean.
Similarly, the rate constants above the mean were used
in the calculation of the upper bound.

J. R. Soc. Interface (2009)

Diffusion-limited protein—protein association rate
constants are generally of the order of 0.1-1 (uMs) "
(Schlosshauer & Baker 2004) but, in the presence of
electrostatic steering forces, the association rates are
larger. Our model estimates for the forward rate
constants are in the range of 1-50 (WM s)~' and are
typical of such values where electrostatic steering forces
are important. Dissociation rate constants can vary
considerably but our model estimates for the backward
rate constants are generally higher than the dis-
sociation constants of protein complexes, which are
usually of the order of 0.1 s~ (Wilkinson et al. 2008).
However, we point out that the model is a simplified
version of the real situation in terms of its individual
reactions, the overall order of events (structural
uncertainty) and the assumption that the species were
uniformly distributed across the cell. The rate con-
stants presented here are fitted in order for this model
to reproduce the in vivo experimental data. Not only
are these values dependent on our model assumptions,
but also on our estimates made for the volume of the
yeast cell and the rate of protein synthesis and therefore
the values may not necessarily correlate with
experimentally measured values in wvitro. As further
experimental data become available, it should be
possible to build a more detailed and comprehensive
model of the translation initiation process. Rate
constant values measured in vitro may then be
incorporated into the model prior to parameter fitting
and this will be investigated in future work.

We found that 90% of the initial sets of rate
constants drawn from the uniform distribution resulted
in acceptable fits (sum of residuals less than 1.0), when
passed through the parameter fitting algorithm. The
mean value of the sum-of-residuals was 0.89 with a
standard deviation of 0.04, equal to 4.5% of the mean,
showing that the fitted profiles we obtained followed a
tight distribution around the measured data points. On
the other hand, the large standard deviations for most
of the fitted parameter values show that they are not
uniquely identifiable from the available data. In other
words, there are many different combinations of
parameter values that give good fits. For this reason,
we shift our focus away from the identification of unique
parameter values and instead analyse the patterns of
flux control. Below, we demonstrate that this system-
level feature is more identifiable since we are able to
formulate an exclusive disjunction on the most con-
trolling reaction.

4.4. Control patterns of the fitted models

For each initial set of randomly drawn rate constant
values, the resulting flux control coefficients were
calculated for each reaction (see §5). The rate constants
were then fitted to reproduce the experimental data and
a fitted set of flux control coefficients were calculated.
Figure 3 shows the mean value for each flux control
coefficient, the average being taken over all 100
randomly selected and fitted parameter sets. The flux
control for the randomly drawn parameters is centred
firmly on reactions 11 and 12. Although this does not
represent a physically realistic scenario, it does show


http://rsif.royalsocietypublishing.org/

Interface

OF

THE ROYAL

JOURNAL
SOCIETY

Interface

OF

THE ROYAL

JOURNAL
SOCIETY

Interface

OF

THE ROYAL

JOURNAL
SOCIETY

Downloaded from rsif.royalsocietypublishing.org

Control of translation initiation R. J. Dimelow and S. J. Wilkinson 57

&

0.6 1
0.5+
0.4+
0.3 1
0.2 1
0.11

flux control coefficient

—_
AS)

0.30
0.25 1
0.20
0.15
0.10 1
0.05 1

flux control coefficient

O.
1 2 3 45 6 7 8 9 1011 12
reaction

Figure 3. Average flux control coefficients for (a) the initial
randomly selected rate constants and (b) the fitted rate
constants.

that there is very little variation in the flux control
across a large and randomly sampled parameter space.
The effect of fitting to the experimental data is to
dramatically modify this pattern of flux control
whereby control is now distributed across six reactions
(2,5, 6,8, 10 and 11). The remaining reactions (1, 3, 4,
7, 9 and 12) exert relatively little control over the rate
of translation initiation.

Principal component analysis (see §5) gave further
insight into the model results by projecting each set of
12 control coefficients onto the two largest principal
components (figure 4). Within the plane of these two
principal axes, 94% of the variance within the control
coefficients is captured. The results suggest that the
control coefficients have formed two clusters. Cluster 1
has a negative value on the first principal axis whereas
for cluster 2 it is positive. The flux control coefficients
were averaged over each separate cluster and are shown
in figure 5.

The flux control coefficients are essentially the same
for both clusters except for reactions 2 and 5. For
cluster 1, the flux control coefficient of reaction 2 is
largest with a value of 0.37, while the flux control
coefficient of reaction 5 is minimal. The opposite effect
is found in cluster 2, reaction 5 having the larger flux
control coefficient of 0.31.

4.5. Response coefficients

The response of the flux with respect to the initial
concentrations of the initiation factors (see §5) was cal-
culated for each set of fitted parameters. The averages
of these response coefficients are plotted in figure 6,
and presented in table 4 with their corresponding
standard deviations.

J. R. Soc. Interface (2009)
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Figure 4. The flux control coefficients projected onto the plane
defined by the two largest principal components here appear
to be less than 100 points since many are coincident.
(a) Cluster 1 and (b) cluster 2.

0.4 -
0.3
0.2 1

0.1

flux control coefficient

1 2 3 4 5 6 7 8 9 10 11 12
reaction

Figure 5. Average flux control coefficients of each cluster
identified by the principal component analysis. For each
reaction, mean of the coefficient values weighted by the size of
their respective cluster correspond to the values given in
figure 3. Filled bars, cluster 1; open bars, cluster 2.

The results show that the initiation factor with the
largest control over the flux is elF2 with a response
coefficient of 0.77, whereas elF5B has the smallest
response coefficient of 0.11. Note that one might not
expect this by just considering the flux control
coefficients. Reaction 1 has a very small flux control
coefficient, yet eIF2 (a reactant of reaction 1) has the
largest response coefficient. Likewise, reaction 11 has a
relatively large flux control coefficient, but the response
coefficient of eIF5B (a reactant of reaction 11) is small.
Unlike the flux control coefficients that must sum to 1,
the response coefficients need not sum to any particular
value. Here we find that the average values for the
response coefficients of all the initiation factors sum to
3.310.4. This says that if the concentrations of all the
initiation factors were simultaneously increased by 1%,
the flux through the pathway would increase by 3.3%.

From an experimental viewpoint these response
coefficients are more informative than the flux control
coefficients, as the response coefficients demonstrate
how the flux through the pathway responds to a change
in concentration that the cell itself may regulate and
the standard deviations in the values of these response
coefficients may be used in experimental design. Several
initiation factors, such as elF1 and eIF'3, have relatively
large standard deviations. The model, in conjunc-
tion with the experimental data, has therefore
revealed a larger degree of uncertainty in these response
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Figure 6. The average value of the response coefficients in
terms of the initial concentration of each initiation factor.

coefficients compared with the others. The next set of
experiments can therefore have greatest impact by
removing this uncertainty, which suggests that these
experiments should be in obtaining the rate versus
concentration curves for the initiation factors elF1
and elF3.

5. METHODS
5.1. Parameter fitting

Fitting the rate constants so that the model reproduces
the experimental results was extensively used in this
study. We have developed a quick and effective
parameter fitting algorithm that can handle a vast
and highly nonlinear parameter space, called the PPT
(Wilkinson et al. 2008) algorithm. This algorithm fits m
parameters using n experimental data points by
minimizing the linear fitting function,

m n
7=t Ak s Ak + > w R + wi- Re.
i=1 i=1
(5.1)
Ak; is defined to be greater than or equal to the
absolute difference in log space between the ith
parameter value k; and an initial estimate %Y, which
we call the nominal value,

Ak;> [log(ky) —log (k?)). (5.2)

Ak, is the infinity norm of Ak;, defined to be greater
than or equal to the maximum Ak;; therefore,

Ak > |log(k;) —log(kY))| Vi (5.3)
R, is defined to be greater than or equal to the ith
residual. The residual is the absolute difference in log
space between an experimental data point, called the

target value T}, and the corresponding model-predicted
value MPV,. Therefore,

R; > |log(T;) —log(MPV,)|. (5.4)

R is the infinity norm of R;, defined to be greater than
or equal to the maximum R therefore,

R., > |log(T,) —log(MPV,)| Vi. (5.5)

Each term in the fitting function is multiplied by a
weight: w™*, wik, wk or wk. In this study, the weights
wtt were chosen to have a value of 10°. All other

weights had a value of 1.
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Table 4. The response coefficients averaged over the family of
models with their standard deviations.

initiation factor mean s.d.
elF2GDP 0.77 0.06
elF2B 0.25 0.17
elF1 0.14 0.18
elF3 0.17 0.20
elF5 0.48 0.14
elF1A 0.36 0.02
elF4E 0.17 0.04
elF4G 0.35 0.05
PabP 0.21 0.06
elF4A 0.12 0.08
elF4B 0.12 0.08
elF5B 0.11 0.01

The first term of the fitting function can be used to
restrain the parameter values to their nominal values.
In this study, the nominal values were set equal to the
randomly drawn initial values. Since we did not want to
bias any parameter towards any particular value, the
weights w" were set to a negligible value of 107"
When there are many parameters and little experi-
mental data, an infinite number of points may exist that
all identically minimize the fitting function at each
iteration of the PPT algorithm. The second term of the
fitting function breaks this symmetry ensuring that the
algorithm moves to the closest point within the infinite
set of possibilities. The third term of the fitting function
is the main term that calculates the difference between
the experimental data and the MPVs. However, to
prevent the algorithm from fitting preferentially to
some experimental data points at the expense of others,
the fourth term of the fitting function penalizes the
maximum residual value.

The fitting function of equation (5.1) is minimized,
subject to equations (5.2)—(5.5), using a linear pro-
gramming algorithm, such as the simplex method or
interior-point method (Williams 1993). This method
requires that constraints, like the fitting function, must
be linear with respect to the parameters log(k;) and
the variables Ak;, Ak, R;and R .. The expression for
the MPVs in equations (5.4) and (5.5) must therefore be
expanded to first order to give the unknown value at
iteration r+ 1 in terms of the known value at iteration r.

log(MPV,)"*! = log(MPV,)"
0 log(MPV,)"

B togy sl ™! —los(k)").

(5.6)
5.2. Control analysis

Flux control coefficients (Heinrich & Rapoport 1974;
Kholondenko & Westerhoff 1993) show how each
individual reaction within the network controls the
steady-state flux through the network and are
defined as

o =9

= 5.7
dln v’ (5.7)

d In vy, is a change made to the rate of the kth reaction
by perturbing both the forward and reverse rate
constants of the reaction. d1ln J is the steady-state
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response of the flux through the network. The
summation theorem for flux control coefficients states
that all flux control coefficients within the network
must sum to 1 (Kholondenko & Westerhoff 1993).
So the value of the flux control coefficient for reaction k
shows what control this reaction has on the steady-state
flux. A value of zero would imply that it has no control
whereas a value of one implies it has total control (all
other reactions must have a zero flux control coeffi-
cient) and therefore would be rate limiting.

Response coefficients show how each individual
species controls the steady-state flux through the
network and are defined as

Rl = 0lnJ

DT[] (58)

d In [X] is a change made to the initial concentration of
species X with d In J being the response of the steady-
state flux as with the flux control coefficient above.

5.3. Principal component analysis

For each set of fitted rate constants, 12 flux control
coefficients, corresponding to each reaction in the
network, can be calculated. One can imagine that this
set of 12 flux control coefficients occupies a point in a
12-dimensional space and when all 100 sets of fitted rate
constants are taken into account we therefore have a
distribution of points. The principal components of this
distribution capture the greatest amount of variance
and showed that 94% of the variance was captured
by just two principal components. The distribution of
points is essentially on a two-dimensional plane within
the 12-dimensional space. The dimensionality of the
flux control coefficients has therefore been reduced
from 12 to 2.

Principal component analysis is an eigenvalue
problem (Leach 2001; Allen et al. 2003). Suppose
there are z sets of flux control coefficients, each set
containing y values (in this study, =100 and y=12).
These data can be arranged in a matrix D containing
z columns and y rows to calculate the variance—
covariance matrix

Z=D'D. (5.9)

The eigenvectors of Zare the principal components. The

corresponding eigenvalues (4;) are used to calculate

the variance captured by the eigenvector. The fraction
of the total variance along the ith principal axis is

Aj

Dk

(5.10)

6. DISCUSSION

Obtaining an accurate biological model of translation
initiation is limited by the following problems.

(i) Several reactions in our simplified model could
be subdivided into individual steps. The appa-
rent rate constants for each reaction are there-
fore hard to derive and in many cases unknown.
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(ii) Experimental estimates of rate constants, where
they exist, will have been performed in vitro and
may therefore not correspond to the in vivo rate
constants within a crowded cellular environment.

(iii) The order of the binding events within the model
is based on our current understanding of the
translation initiation process and will naturally
be an approximation. Furthermore, valid alterna-
tive pathways may exist in parallel (Sangthong
et al. 2007).

(iv) Our assumption that the initiation factors are
uniformly distributed across the cell does not take
into account spatial variance within the cell
(Minton 2006; Sun & Weinstein 2007).

A major problem is then to select suitable values for
the 23 rate constants in the model. However, even an
accurate value for a binding constant is of little use if
any of the above problems are significant. We therefore
have to accept that the rate constants used in our model
cannot easily be obtained by experiment or derived
from physical reasoning. This forces us to take a
different approach that focuses on the behaviour
displayed by the model.

The parameter fitting methodology, the PPT algo-
rithm (Wilkinson et al. 2008), was used to fit randomly
selected rate constants to the limited experimental
data. The probability of successfully fitting a set of
random parameters to the experimental data was greatly
improved by applying an additional constraint, which
prevented each rate constant from changing beyond
30% of its value at the previous iteration. It should
be emphasized that there are many combinations of
parameter values that give fits as good as those shown in
figure 2. This problem is therefore an under-determined
one when viewed from a classic parameter estimation
perspective. It is not possible to uniquely identify the
values of most of the parameters in the model and this
is an extremely common problem for this type of model
given the limited experimental data.

The range of behaviour displayed by the model was
investigated by considering the flux control coefficients
obtained from each set of fitted parameters. The results
demonstrate that there is no single reaction that is rate
limiting, but the rate control is distributed among
several of the reactions. However, principal component/
clustering analysis on the flux control coefficients shows
that the model predicts two distinct patterns of rate
control that differ only in the flux control coefficient of
two out of the 12 reactions. The first distribution
identifies reaction 2 (elF'2B-catalysed reaction) as having
the greatest control over the rate whereas the second
distribution predicts reaction 5 (production of the MFC).
Clearly, the two possibilities cannot both be correct. It is
interesting to note, however, that other studies have
proposed that the elF2B-catalysed reaction is a major
control point in protein synthesis (Welsh et al. 1996;
Campbell et al. 2005; Pavitt 2005; Campbell & Ashe
2006) and is consistent with our model prediction that
reaction 2 may have the largest control over the rate. The
response coefficients calculated using our model also
support this result, predicting that the initiation factor
elF2 exerts the largest control over the rate of initiation.
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A recent study (Asano & Sachs 2008) proposes that
the MFC controls translation via a cooperative set of
interactions involving its constituents, the elF2 and
the tRNA. It is clear then that the role of elF2
in the formation of the MFC is more complex than
the simplified mass-action kinetics presented here.
However, this study shows that it is still possible to
extract meaningful results and make testable predic-
tions, even when the model may be approximate and
little experimental data are available.

7. CONCLUSION

In this paper, we have made a first attempt at
quantitatively understanding the distribution of rate
control in the translation initiation pathway. The key
contribution of this paper is to use the available data to
infer an important system-level property of the system
that we hope can be experimentally tested. We found
that generating a family of possible parameter sets, each
one capable of reproducing the experimental data, was a
powerful and effective approach; particularly where
parameter values are unknown, the structure of the
model is uncertain and the experimental data are limited.

It should be noted that the output from this exercise
is not a particular model instance—that is, one with a
specific set of parameter values that is able to
accurately simulate translation initiation under a
range of conditions. While this remains the ultimate
goal of our efforts, the structural uncertainty and
paucity of available experimental data completely
preclude this at present. Nevertheless, we have been
able to explore a diverse space of possible models to
produce a subspace of fitted models that collectively
suggest directions for further experimental effort. In
particular, for eIF'1 and elF3, our results indicate that a
more precise quantification of their influence on
translation would be valuable. Furthermore, some
degree of validation of our analysis has been provided
by previous work on the importance of the elF2 cycle.

Finally, we note that the problem of insufficient data
addressed in this paper is a very common one and is
becoming an issue of intense interest in systems biology.
Can under-determined kinetic models still add value to
the experimental process? It is hoped that our
methodology can be extended into a general framework
in which detailed models can enhance knowledge, even
when unique estimation of their constituent parameter
values is not possible.

R.J.D. acknowledges funding from BBSRC grant BBE003
7291 awarded to J. E. McCarthy and H. V. Westerhoff. S.J.W.
acknowledges funding from BBSRC grant BBD0190791
awarded to H. V. Westerhoff, D. B. Kell and S. Oliver.

APPENDIX A

We now provide justification for our use of pseudo-third-
order rate laws for some of the forward reactions, such as
reaction 4 in our model, in which three initiation factors
assemble into an intermediate complex. Consider the
general case of three species A, B and C that can
associate in a random order. We break this aggregate
reaction into a set of subreactions, each conforming to

J. R. Soc. Interface (2009)

mass-action kinetics. We assume rapid equilibration
between the monomeric and the heterodimeric species
via forward and reverse reactions. For the formation of
the final complex, however, we consider only the forward
reaction since we are only interested in an expression for
the forward rate of the overall reaction—that is, the rate
of production of the final complex. We can write the set

of subreactions as
AB
kl

— kLB
A+B AB AB+C—>ABC, (A1)
kAT
k' e
A+C AC AC+B—>ABC, (A 2)
k?c kBC
B+C BC BC+A—>ABC. (A 3)

Looking at the subreactions given by equation (A 1),
we can write the rate of production of the heterodimer
AB as

BB — p1(a)B) - #25(AB
We now assume that this heterodimer is close to steady
state (the same assumption is made in the derivation of
the Michaelis-Menten equation in which the concen-
tration of the enzyme-substrate complex is assumed to
be approximately steady). This yields an expression for
the concentration of the heterodimer

ap) = KA

EAR + E5P[C)
The expression for the rate of production of complex
ABC in equation (A 1) is therefore,

AB _ L AB _ k3R [A][B][C]
Vtorward = k? [AB] [C] - W

~KPABJ[C]. (A 4)

(A5)

(A 6)

Looking at the denominator we now assume that
kAB > E4B[C]—the rate at which the heterodimer
dissociates is much more rapid than the rate at which
it associates with species C. Here, we are implying that
the first-order dissociation reaction (unlimited by diffu-
sion) is rapid compared with the second-order complex
association reaction, which is limited by the diffusion of
the co-substrate C. This gives a final third-order rate
equation for the overall forward rate of the subreaction
given by equation (A 1),
ap kPRSP

Yforward = kT]? [A][B][C]. (A7)
Similarly, the same form of expression can be derived for
the other reactions (equations (A 2) and (A 3)) to give
the final overall expression for the forward rate of
complex formation.

total ___AB AC BC
Utorward = Yforward + Uforward + Vtorward

]CAB kAB ]CAB kAB kBC kBC
=(}$ = +;£)mmmm
—1 —1 —1
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